

Layer 4 Optimization Solution

Unplanned Growth Crushing Mobile Networks

Mobile Broadband

Smartphones & OpenOS

Massive Growth*

- 3900% increase
 - 2009-2014
- •66% Video by 2013

Network Stress

- "Brown-Outs":
- Bottlenecks
- Latency
- Lost connections
- Upset subscribers

Apps & Services

Compelling

Attractive Pricing

* Cisco VNI 2010

The Challenging State of Mobile Networks

- ARPU is not keeping up with costs
- Device consumption growing
 - 2GB/mo on laptops
 - 250MB/mo on smartphones
- Managing networks is tough
 - Varied users and service models
 - Very uneven subscriber usage
 - Increased uplink traffic
 - Dropped connections, slow response

Figure 4. Revenue trends do not correspond with traffic growth.

Cost and revenue misalignment demands optimization strategies

General Solutions

- Spectrum & cell site enhancements
 - Expensive and slow to deploy
- HSPA, LTE, WiFi offload
 - TCP inefficiencies exist
- DPI\Policy (caps &tiers)
 - Decisions made after data is consumed
- Compression, transcoding, video shaping
 - CPU intensive, hard to scale, increases latency
 - Decreasing value as content providers implement at the source
- Server-based transport optimization
 - Limited impact

- Mobidia Complements
 - Client\Server UDP approach
 - 15-30% efficiency gains
 - Incremental to other solutions
 - Scalable
 - Hosted solution deploys quickly
 - Performance on 3G, 4G
 - Enhanced policy, DPI, offload

Better Networks with Intelligence at the Edge

Overall System Software Components

1. Enhanced Network Stack

- Works on laptops, smartphone, tablets
- No user interface or configuration

Client architecture enables optimization and enhanced policy, DPI, off-load

2. Server Software

- Limited processing, power, and memory requirements
- Flexible Deployment Options
 - Hosted
 - Stand-alone in-network
 - Integrated (GGSN, gateway, optimization)

Flexible server, single-blade architecture enables flexible deployment options.

Server can live in RAN, core network, or hosted co-location

Mobidia's Differentiated Benefits

- Mobidia's solution is scalable, complimentary
 - Significant efficiency gains
 - Fundamental base to compliment other optimization
- Improves existing networks and 21\42Mbps, HSPA & LTE
- Limited processing requirements ease integration and scalability
 - Integrates with GGSN, gateways, compression without impact or latency
 - Hosted solution deploys quickly
- Client-based architecture evolves to increase ROI
 - Better policy enforcement and differentiated services
 - Enhanced DPI
 - Enhanced Off-load
 - More comprehensive understanding & management of the network

Mobidia's Technology has been Trialed World Wide

Repeatable performance on 20+ networks

<u>EMEA</u>

- R&D Vodafone Global
- Vodafone Germany (D2)
- T-Mobile International
- Orange UK
- O2/Telefonica
- Three UK
- Vodacom

North America

- T-Mobile
- Verizon
- Rogers
- Sprint
- AT&T

Asia Pacific

- Vodafone Australia
- Maxis & Celcom
- Indosat & Telkomsel
- Starhub, PCCW, CSL

HSPA Network Results

- Repeatedly outperformed TCP
- 20+% capacity recovery
- Data sessions completed faster
- Bandwidth rates significantly increase user experience

Example of an "A/B" comparison of TCP and Mobidia (multiple test profiles run consecutively)

EVDO RevA Network Results

- Download connection rates increased by 24 to 42%
- Upload rate increased by 68%
- Capacity recovery of over 20%

New HSPA+ Network Results

- Mobidia demonstrated
 2X rate increase over TCP
- TCP fails to fully utilize mobile resources
 - Poorly reacts to RTT variability & packet discards
- Decreased resource demands
 - Retransmission -35%
 - Spurious -90%
 - ACK bytes -50%

Each hour represents a number of runs and variety of traffic profiles.

Vodafone D2 Case Study 36M Subscribers

Summary

- Unique client-based solution offers immediate, fundamental value today
 - Recovers capacity thru increased efficiency
 - Lowers congestion contributions of users
 - Increases mobile data throughput performance by over 20%
 - Scalable and integration-friendly
 - Transparent to other optimization solutions
 - Transparent to applications and servers
 - Low processor requirements
- Evolves to deliver more value after architecture implemented
- Flexible deployment options enable quick, scalable usage

APPENDIX

TCP vs Mobidia's DMP

- TCP has inherent weaknesses on radio links
 - High RTT variation is often misinterpreted as congestion
 - Window collapse that reduces radio-link efficiency
 - No awareness of connection rate
 - No awareness of competition for limited connection resources
 - Over-contributes data into the network
 - especially for multi-sessions from single user
 - Spikes of in-flight data drive congestion
- Mobidia's DMP is optimized for mobile data networks
 - Increase peak hour data throughput (15-30% increases)
 - Lower congestion (maintains minimal amount of data in flight)
 - Improved user experience across all users (eliminates congestion spikes)
 - Heavy and Light users consume same network resource
 - Users with multiple sessions contribute identically to those with single sessions

Mobidia's DMP Topology and Basics

- A client/server layer 4 solution
- TCP sessions eliminated from the radio core
- Mobidia's DMP uses UDP protocol to transport TCP payload
 - A reliable transport with no payload modification
- 1:1 DMP to TCP session mapping enables full QoS in the radio core
- Multiple addressing options
 - Host server either "sees" UE address or server address
 - UE address useful for transparency
 - Server address useful for session continuity
 - UE directs DMP traffic to server

DMP Mechanisms

- Aggregated session management (ASM) across RAN segment
 - Replaces independently maintained Tx windows of TCP
 - Optimal congestion contribution and throughput are balanced
- Per UE managed data-in-flight (DIF)
 - DIF is dynamic to connection and conditions
 - Downstream and upstream shaped to realized connection rate
- Tightly managed resource allocation across active sessions of a UE
 - Conversely, enforcement is tightly coupled to congestion management/available connection rate in real time

Opportunity to Improve on TCP Throughput on Wireless Network Connections

- Ideal DIF equals Realized data rate * Real-time RTT
- Unnecessary window collapse as the result of variability in transmission delay (RTT)
 - RTO expiry also generates a spurious retransmission.
- DMP appropriately responds to transmission delay variability characteristics of wireless networks

Opportunity to Improve on TCP Congestion Contribution and Fairness

- Data-in-flight congests queues in backhaul
- TCP DIF increases with multiple sessions as each session acts independently
- TCP increases window size (data in flight) until there is a loss event
- TCP hunting translates to inefficient use of limited radio resource
- DMP follows ideal DIF defined by **Real-Time BDP** of radio connection

ASM & DIF Plots for Back to Back TCP/DMP Test*

Plot starts are aligned

© Mobidia Technology, Inc. All rights reserved. Proprietary and Confidential - provided to Vodafone under NDA

Measurement using Win7 laptop with 4 simultaneous

sessions on HSPA network